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Abstract

Let n be an integer and A0, . . . , Ak random subsets of {1, . . . , n} of
fixed sizes a0, . . . , ak, respectively chosen independently and uniformly.
We provide an explicit and easily computable total variation bound
between the distance from the random variable W = |∩k

j=0Aj |, the size
of the intersection of the random sets, to a Poisson random variable Z
with intensity λ = EW . In particular, the bound tends to zero when
λ converges and aj → ∞ for all j = 0, . . . , k, showing that W has a
asymptotic Poisson distribution in this regime.

1 Introduction

Let n be an integer, take k +1 random subsets A0, . . . , Ak of {1, . . . , n} with
fixed sizes a0, . . . , ak, uniformly and independently from all subsets with the
given sizes and let W denote the size of their intersection,

W = |
k⋂

j=0

Aj|. (1)
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The random variable W arises in a variety of contexts, signal detection
and MELK, or Multi-Epitope Ligand Cartography, to name two. MELK,
for instance, is a method for direct functional linkage analysis. In a sample
of cell tissue, the intensity of a fluorescent marker is measured. The marker
is attached to monoclonal antibodies binding specifically to various protein
epitopes. A microscopic image of the sample is taken, and the intensity of
fluorescence is measured for each pixel. Biologically relevant interactions
between specified proteins are expected to show up in a surprisingly large,
or surprisingly small, number of pixels at which these concentrations exceed
some appropriately chosen threshold values simultaneously. This procedure
for determining function has been coined, therefore, subset surprisology. For
the choice of suitable thresholds, a distributional approximation of the count
W gives information on how surprised one should be, or not be, to observe
certain thresholds exceeded. The surprisology methodology was implicitly
proposed in Schubert [9].

A Poisson approximation to W , and an asymptotic result, was proved
in Dress et al. [5] using the inclusion-exclusion principle and some intricate
calculations involving the complex form of the exact distribution of W . Us-
ing Poisson approximation, one replaces the exact but difficult to compute
probabilities P (W = a) by P (Z = a), where Z has a Poisson distribution
with the same mean, λ, as W . In particular, with λ given by the simple form
(4), one approximates P (W = a) by

P (Z = a) = e−λ λa

a!
, a = 0, 1, . . . ,. (2)

Proving an asymptotic result using the exact distribution of W requires ma-
nipulation of the so called Poisson numbers An|a0,...,ak

(a), the number of ways
subsets Aj, j = 0, . . . , k of {1, . . . , n}, with sizes a0, . . . , ak, respectively, can
have an intersection of size a. The technique in [5] which justifies the Poisson
approximation asymptotically through calculations involving the exact dis-
tribution does not give a bound on the error one incurs when approximating
W by the Poisson. Here we provide an error bound which holds for all finite
n, from which the asymptotic results of [5] follow. We also avoid working
directly with the cumbersome form of An|a0,...,ak

(a).
Stein’s method and its variants provide powerful tools to bound the dis-

tance between a random variable W and a given target distribution. In
particular, the Chen-Stein method provides explicit error bounds when ap-
proximating a random variable W by Z, having a Poisson distribution with
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parameter λ = EW . The method was first developed by Stein [10] for nor-
mal approximations; more details can be found in [11]. Chen [4] used Stein’s
ideas in the Poisson context. In Arratia et al. [1] Chen’s approach was taken
with the aim of providing easily computable bounds; Arratia et al. [2] pro-
vides a friendly introduction. The book [3] by Barbour, Holst and Janson
gives an extensive overall treatment of the Poisson approximation method,
of which a part is brought to bear here on the problem of interest. The result
is not only a limiting Poisson asymptotic for W , but also a bound for the
approximation error as measured in total variation distance, which can be
explicitly computed as a function of the known parameters of the problem.
The Chen-Stein method avoids ofttimes tedious direct calculations involving
the exact distribution of W by relying instead on relatively simple coupling
constructions, described in detail below for the case at hand.

It is well known that the Poisson distribution is a good model for counting
the number of occurrences of rare events in an experiment with many trials
(see Feller [6]), and W of (1) is seen to fit this mold by writing the size of
the intersection as the sum of n indicators,

W =
n∑

α=1

Xα where Xα = 1(α ∈ ∩k
j=0Aj). (3)

That is, though it might be rare for an α to belong to all the sets, the
experiment is being repeated many times if n is large. It is for this reason
that we should be able to approximate W by a Poisson random variable Z of
the same mean, λ. Since the sets Aj, j = 0, . . . , k are chosen independently,
Xα is the product of independent indicators,

Xα =
k∏

j=0

1(α ∈ Aj), and we have EXα =
k∏

j=0

aj

n
.

Hence λ = EW =
∑n

α=1 EXα is given by

λ = n
k∏

j=0

aj

n
= n−k

k∏
j=0

aj. (4)

Though the indicators which comprise the sum W are not independent,
the Chen-Stein method handles many forms of dependence through its use
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of coupling, and characterizing equations. In particular, a random variable
Z has the Poisson distribution with parameter λ > 0 if and only if

EZf(Z) = λEf(Z + 1) (5)

for all functions f for which the above expectations exists. The characterizing
equation (5) is reminiscent of the size bias operation. In particular, for any
non-negative random variable X with finite mean µ > 0, we say that X∗

has the X-size biased distribution if, for all functions f for which EXf(X)
exists,

EXf(X) = µEf(X∗). (6)

The size bias distribution X∗ is that of X weighted by the size of X itself,
for which reason it appears in sampling; for instance, it is twice as likely to
call a residence with two phone lines than a residence with only one, when
dialing numbers at random. For X ∈ {0, 1, . . . , } with finite mean we can
write the distribution of X∗ explicitly as

P (X∗ = a) =
aP (X = a)

EX
, a = 0, 1 . . . ,.

We note in particular thatP (X∗ = 0) = 0. Hence, to size bias a random
variable X ∈ {0, 1} with P (X = 1) > 0, we must have X∗ = 1. For dis-
cussion of the relation between size biasing and Stein’s method, and further
constructions such as the one we will apply below, see Goldstein and Rinott
[8] and Goldstein and Reinert [7].

We can restate the characterizing equation (5) for the Poisson in terms
of size biasing, using equation (6), as follows: Z has a Poisson distribution if
and only if Z∗ = Z + 1, in distribution, or equivalently, if and only if Z∗ − 1
and Z have the same distribution. Therefore, it makes sense that W ∗ − 1 is
close to W if and only if the distribution of W is close to Poisson.

One way to study the proximity of W ∗ − 1 to W is by coupling W and
W ∗ together on the same space. When

W =
n∑

α=1

Xα

is the sum of independent, non-negative variables Xα with mean EXα = pα,
a coupling of W to W ∗ can be accomplished easily as follows. First, choose an
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index α with probability proportional to pα. Then replace Xα by a variable
Xα

α having the Xα size biased distribution, and which is independent of
Xβ, β 6= α (see, for example, [8].) For a sum of dependent variables, the
procedure is nearly the same. Choose an index α and replace Xα by Xα

α as
before. Then, adjust the remaining variables for β 6= α to yield variables Xα

β

with the conditional distribution of the original variables Xβ, conditioned on
the Xα variable taking on its newly chosen value Xα

α . That is, with

Wα =
n∑

β=1

Xα
β , α = 1, 2, . . . , n, (7)

one constructs the size bias variable W ∗ by setting it equal to W α with
probability proportional to pα. This construction often leads to a tractable
situation, even in the presence of dependence, which allows computation of
distances, or bounds on distances, between W and W ∗ − 1, which then can
be translated into distances between W and Z, its Poisson approximant.

Distance between the distributions of non-negative integer valued random
variables X and Y can be measured by the total variation distance, defined
by

dTV (X,Y ) =
1

2

∞∑
a=0

|P (X = a)− P (Y = a)|, (8)

or by using its alternate forms expressed in terms of functions f , and ‘worst
case’ sets B,

dTV (X, Y ) = sup
0≤f≤1

|Ef(X)− Ef(Y )| = sup
B⊂{0,1,...}

|P (X ∈ B)− P (Y ∈ B)|.

Hence, focusing on the last formulation, when using the distribution of Y to
approximate the probability that X lies in any set, one cannot make an error
greater than dTV (X, Y ).

The intuition that W is close to Poisson when it is close to W ∗ − 1 is
made rigorous in the following result, which combines Theorem 1.B, p.11, of
[3], with Lemma 1.1.1, p.7 ibid. and adapts it to the structure in our special
case.

Theorem 1.1 Let W =
∑n

α=1 Xα be the sum of indicator variables Xα, and
W ∗ be defined on the same space as W with the W size biased distribution,
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constructed by choosing Wα as in (7) with probability proportional to EXα.
Then

dTV (W, Z) ≤
(
1− e−λ

)
E|W − (W ∗ − 1)|

≤ min(1, λ)E|W − (W ∗ − 1)|.

We now apply the construction given above to couple W of (1) to a size
biased W ∗, and then use Theorem 1.1 to obtain a total variation bound
between W and Z.

2 Total Variation Bound

Use of a coupling construction, along with Theorem 1.1, yields the following
result.

Theorem 2.1 Let W be given by (1) and let Z be a Poisson random variable
with mean λ = EW , given in (4). Then

dTV (W, Z) ≤
(
1− e−λ

)
λ

{
1−

(
1 +

1

n− 1

)k k∏
j=0

(
1− 1

aj

)}
(9)

≤ min(λ, λ2)

{
1−

(
1 +

1

n− 1

)k k∏
j=0

(
1− 1

aj

)}
(10)

≤ ca min(λ, λ2)
k∑

j=0

1

aj

, (11)

where

ca = −a log

(
1− 1

a

)
and a = min

0≤j≤k
aj.

Proof: A coupling of W , given in its summation form (3), to a variable W ∗

with the W size biased distribution can be achieved as follows. First, select
an index α with probability proportional to EXα; since EXα is the same for
all α, we simply pick α with uniform probability. Next, we need to size bias
Xα and adjust the remaining variables to have their original distribution,
conditioned on Xα taking on its newly chosen value.

Since Xα is either zero or one, size biasing it amounts to setting it equal
to one to give Xα

α = 1. In terms of a new configuration, α needs to be
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contained in all the sets. If α ∈ Aj already, we set Aα
j = Aj. If α 6∈ Aj, we

select an element of Aj, say βj, uniformly with probability 1/aj, remove it
from Aj and replace it by α. That is, we set

Aα
j =

{
Aj α ∈ Aj

(Aj \ {βj}) ∪ {α} α 6∈ Aj.

Now, for the remaining variables, let

Xα
β =

k∏
j=0

1(β ∈ Aα
j ),

and Wα be given by (7). Since Xα
α = 1 by construction, we have

Wα = 1 +
∑
β 6=α

Xα
β . (12)

By (3) and (12),

W − (Wα − 1) = Xα +
∑
β 6=α

(Xβ −Xα
β ).

By construction, for β 6= α, we have Xβ ≥ Xα
β since β might have been

removed from one of the sets Aj, j = 0, . . . , k to make room for α. Therefore
W − (Wα − 1) ≥ 0, and

E|W − (W α − 1)| = EXα +
∑
β 6=α

E(Xβ −Xα
β )

= pα +
∑
β 6=α

pβ −
∑
β 6=α

EXα
β

= λ−
∑
β 6=α

EXα
β .

Using independence to calculate EXα
β we find

EXα
β =

k∏
j=0

E1(β ∈ Aα
j ) =

k∏
j=0

aj − 1

n− 1
.

The last equality holds because Aα
j has aj elements, but α ∈ Aα

j always,
while the other aj − 1 members of Aα

j appear uniformly from the remaining
n− 1 elements.
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Hence

E|W − (W α − 1)| = λ−
∑
β 6=α

k∏
j=0

aj − 1

n− 1

= λ− (n− 1)
k∏

j=0

aj − 1

n− 1
(13)

= λ

(
1− (n− 1)

n

∏k
j=0

aj−1

n−1∏k
j=0

aj

n

)

= λ

{
1−

(
1 +

1

n− 1

)k k∏
j=0

(
1− 1

aj

)}
. (14)

Since the last expression is constant in α, averaging over α with probabilities
proportional to EXα/EW = 1/n to give W ∗ shows E|W − (W ∗−1)| is given
by (14). Now Theorem 1.1 yields (9).

To achieve (10), use 1−e−λ ≤ min(1, λ). Next, note that (14) is bounded
above by

λ

{
1−

k∏
j=0

(
1− 1

aj

)}
.

Since

1− x ≥ e−ca x for all 0 ≤ x ≤ 1/a,

we have

1−
k∏

j=0

(
1− 1

aj

)
≤ 1− exp

(
−ca

k∑
j=0

1

aj

)
≤ ca

k∑
j=0

1

aj

,

yielding (11).

Remark 2.1 For a = 2 (only), ca ≤ 1.39, while if a = 10, then ca ≤ 1.0537,
which is already very close to the asymptotic, minimal value of

lim
a→∞

−a log

(
1− 1

a

)
= 1.
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Theorem 2.1 allows us to recover Theorem 4.1 and Corollary 4.4 of Dress
et al. [5] as an immediate consequence of the bound (11) and Remark 2.1.

Corollary 2.1 Suppose the sizes a0,n, . . . , ak,n of the subsets A0, . . . , Ak of
{1, . . . , n} tend to infinity as n →∞. Then, if λ = λn given in (4) satisfies

lim sup
n→∞

λn < ∞,

dTV (W, Z) → 0 as n → ∞. Hence, if λn converges to λ∞, say, then W
converges in distribution to a Poisson variable with parameter λ∞.

Remark 2.2 If aj = 1 for some j then Aα
j = {α}, and hence Xα

β = 0 for
all β 6= α. In this case, since W ≤ a always, W ∈ {0, 1} and a Poisson
approximation will not be valid. We note that in this case bound (9) becomes
(1− e−λ)λ, which may be greater than one.

Remark 2.3 It is not necessary in Corollary 2.1 for lim supn→∞ λn < ∞ as
n →∞ for dTV (W, Z) → 0. It suffices that a ≥ 2 and λn

∑k
j=0 1/aj,n → 0.

Remark 2.4 Recalling (4) and letting

λn = n−k

k∏
j=0

aj and µn = (n− 1)−k

k∏
j=0

(aj − 1)

be the intensity for the given problem, and a reduced one where the individual
n is removed from {1, . . . , n} and the sizes of all sets Aj are reduced by one,
in view of (13), Theorem (2.1) can be stated compactly as

dTV (W, Z) ≤ (1− e−λn)(λn − µn).

Remark 2.5 The bound (9) is valid for all values of k, including k > n, and,
for a given sequence a0, a1, . . ., decreases as k increases. But even for small
k, such as k = 1, the Poisson approximation may be valid. In particular, if
a0 and a1 increase to infinity at a rate such that

lim
n→∞

a0

n1/2
= c0 and lim

n→∞

a1

n1/2
= c1,

we have

λ → c0c1 and
∑

j

1

aj

= O(
1√
n

) → 0,

which imply, by Corollary 2.1, that W has an asymptotic Poisson distribution
with parameter c0c1.
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Remark 2.6 The framework here, and the Poisson approximation, could
be further generalized. With some additional effort, we could consider the
situation where Aj is a set chosen with a non-uniform distribution from all
subsets of size aj of {1, . . . , n}. The size bias construction generalizes in a
straightforward way.

In addition, one could derive a Poisson point process approximation for
the point process

Ξ =
n∑

α=1

δαXα;

here δα denotes point mass at α. To this purpose one may employ the ana-
log of Theorem 1.1 for point processes, namely Theorem 10.B, p.211, in [3],
yielding a point process version of our Theorem 2.1. As Ξ contains informa-
tion not only on the number of points (pixels) that are present in all the sets,
but tells us also which ones these pixels are, such a result could make even
better use of spatial information in MELK type data.

3 Numerical Comparison

Below is an extract of the table in [5], comparing the actual values P (W = a)
to their Poisson approximants P (Z = a), for various choices of the parame-
ters of the problem, and a. We have augmented the table by including the
bound (9) on the total variation distance between W and Z, denoted by
Bound, and, for n ≤ 10000, the actual total variation distance, denoted by
TV.

n k + 1 a0 a1 a2 a λ P (Z = a) P (W = a) TV Bound
1000 3 100 100 100 3 1 0.0613 0.0604 0.0078 0.0175
100 2 10 10 0 1 0.3679 0.3305 0.0577 0.1149

10000 2 100 100 3 1 0.0613 0.0607 0.0055 0.0125
1000000 2 1000 1000 3 1 0.0613 0.0613 0.0012

1000 2 60 50 5 3 0.1008 0.1022 0.0280 0.1008
1000 2 100 30 0 3 0.0498 0.0403 0.0336 0.1198
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The probabilities P (W = a) are calculated using the exact formula in [5],

P (W = a) =
An|a0,...,ak

(a)∏k
j=0

(
n
aj

)
where

An|a0,...,ak
(a) =

(
n

a

) n∑
a′=a

(
n− a

a′ − a

)
(−1)a′−a

k∏
j=0

(
n− a′

ai − a′

)
. (15)

As (15) is complex, it is clear, therefore, why having a good and easily
computable approximation such as (2) can be of value. Moreover, as the
total variation distance TV in (8) is a sum over all differences |P (W =
a) − P (Z = a)|, each of which involves the exact probabilities, calculating
TV for the larger values of n can become rather cumbersome. Nevertheless,
the upper bound, Bound (9), can be easily calculated in all cases.

The total variation distance (8), and hence any upper bound to it, may
naturally exceed the difference between the true and approximated probabil-
ities at any particular value. We note, however, that the total variation and
its bound are nevertheless of a similar order of magnitude as the observed
differences, and, moreover, that the bound on TV is not far from the actual
value. Hence if the set sizes aj, j = 0, . . . , k, are such that the upper bound
is small, being easily computable, it can be usefully incorporated to obtain
conservative and non-approximate error estimates when approximating W
by Z.
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